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Let G = ([n], E) be a graph, let C be a finite set of colors and let c : [n] → C be an initial
coloring of the nodes of G. If the number of colors is |C| = h we will call c an h-coloring.
Consider the following family of protocols

Protocol 1 k-majority

At every step each node independently picks k neighbors (including itself and with repetition)
u.a.r. and recolors itself according to the majority of the colors it sees.

Our first main goal for this line of research on distributed community detection and beyond
would be to prove the following conjecture.

Conjecture 1 Let G ≡ Kn be the clique with n-nodes. For every initial h-coloring with
2 � h � log n, if each node runs the k-majority protocol with 2 � k � n, then after O(log n)
time steps all nodes have the same color w.h.p.

1 Unbalanced 2-coloring with 3-majority

We start analyzing the 3-majority protocol in the case of 2-colorings. For a 2-coloring c :
[n] → {red, blue}, we say that c is ω-unbalanced, if the difference between the number of red
and blue nodes in absolute value is at least ω. In the next lemma we show that, if the initial
configuration is sufficiently unbalanced, then the conjecture is true.

Lemma 2 If G ≡ Kn, the initial 2-coloring is Ω(
√
n log n)-unbalanced, and each node runs

the 3-majority protocol, then after O(log n) time steps all nodes have the same color w.h.p.

Proof. Let Xt be the random variable counting the number of red nodes at time t. For every
node i let Yi the indicator random variable of the event “node i is red at the next step”. For
every a = 0, 1, . . . , n it holds that

P (Yi = 1 |Xt = a) =
(a
n

)3
+ 3

a2(n− a)

n3
=

a2

n3
(3n− 2a)

Hence, the expected number of red nodes at the next time step is

E [Xt+1 |Xt = a] =
(a
n

)2
(3n− 2a) (1)
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We split the analysis in three phases.

Phase 1: From n/2−Θ
(√

n log n
)
to n/4:

Suppose that the number of red nodes is Xt = a for some a � n/2− s where c
√
n log n � s �

n/4 for some positive constant c. Now we show that Xt+1 � n/2− (9/8)s w.h.p.
Observe that function f(a) = a2(3n− 2a) in (1) is increasing for every 0 < a < n. Hence,

for a � n/2− s we have that

E [Xt+1 |Xt = a] =
(a
n

)2
(3n − 2a) �

(n
2
− s
)2

(3n − 2(n/2 − s))

=
n

2
− 3

2
· s+ 2 · s

3

n2
� n

2
− 5

4
· s

where the last inequality holds because s � n/4.
Notice that random variables Yi’s are independent conditional onXt. From Chernoff bound

(Lemma 4) it thus follows that, for every a � s � n/4 it holds that

P

(
Xt+1 � n

2
− 9

8
· s
∣∣∣∣ Xt = a

)
� e−s2/(64n) (2)

If s � c
√
n log n we have that Xt+1 � (n/2)− (9/8)s w.h.p. Thus, when c

√
n log n � s � n/4

the unbalance of the coloring increases exponentially w.h.p.

Let us name Et the event

Et = “Xt � max
{n
4
,
n

2
− (9/8)t

}
”

Observe that from (2) it follows that, for every t ∈ N, we have

P

(
Et+1

∣∣∣∣∣
t⋂

i=1

Ei
)

� 1− n−α

Thus, for T = log(n/4)
log(9/8) = O(log n) the probability that the number of red nodes has gone

below n/4 within the first T time steps is

P (∃t ∈ [0, T ] : Xt � n/4) � P

(
T⋂
t=1

Et
)

�
T∏
t=1

P

(
Et
∣∣∣∣∣
t−1⋂
i=1

Ei
)

� (1− n−α)T � 1− 2Tn−α � 1− n−α/2

Phase 2: From n/4 to O(log n): If Xt = a with a � (1/4)n, from (1) it follows that

E [Xt+1 | Xt = a] � 3

4
a

and from Chernoff bound (Lemma 5) it follows that

P

(
Xt+1 � 4

5
a

∣∣∣∣ Xt = a

)
� e−βa

for a suitable positive constant β. Hence if a = Ω(log n) then the number of red nodes
decreases exponentially w.h.p. By reasoning as in the previous phase we get that after further
O(log n) time steps the number of red nodes is O(log n).
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Phase 3: From O(log n) to zero: Observe that for a = O(log n), in (1) we have that

E [Xt+1 |Xt = a] � c/n

for a suitable positive constant c. Hence, by using Markov inequality P (Xt+1 � 1 |Xt = a) �
c/n and since Xt+1 is integer valued it follows that all nodes are blue w.h.p. �
In the previous lemma we showed that, if the 3-majority protocol starts from a 2-coloring
that is sufficiently unbalanced then after O(log n) time steps the graph is monochromatic. A
natural question is whether the lemma still holds if we use the 2-majority protocol.

For the 2-majority protocol over a 2-coloring we need to specify a way of breaking ties. A
natural way for that is the inertial way: In case of ties keep your current color.

Exercise 3 Show that if each node runs the 2-majority protocol with inertia then, if we start
from a Θ(

√
n log n)-unbalanced 2-coloring, after O(log n) time steps all nodes have the same

color w.h.p.

2 Conclusions

In this episode we proved that if we start from a sufficiently unbalanced 2-coloring on a clique
and we run the 3-majority protocol we will end-up in a monochromatic graph in O(log n)
time steps. This result easily extends to the 2-majority protocol. What happens if the initial
configuration is not unbalanced? and if we have more colors?

See you on the next episode. . .

Appendix

Lemma 4 (Chernoff bound, additive form) Let X =
∑n

i=1Xi where Xi’s are indepen-
dent Bernoulli random variables and let µ = E [X]. Then for every λ > 0 it holds that

P (X � µ+ λ) � e−2λ2/n

Lemma 5 (Chernoff bound, multiplicative form) Let X =
∑n

i=1 Xi where Xi’s are in-
dependent Bernoulli random variables and let λ � E [X]. Then for 0 < δ < 1 it holds that

P (X � (1 + δ)λ) � e−(δ2/3)λ
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