
Some Notes on Randomized Distributed Protocols

Andrea Clementi
Universitá di Roma Tor Vergata

Rome, Italy

clementi@mat.uniroma2.it

1 Basic Concepts

• Definition of a Randomized Algorithm: Probability Space, Faulty Executions, Error Proba-
bility, Expected Complexity

• Notion of Good Randomized Algorithms

A probabilistic algorithm A is an algorithms that has access to a source S of random bits and
it can takes decisions according to the outcome of the random bits it asks to S. Given a fixed input
x of size n, consider the execution A(x) and let r := r(x) be the total number of random bits A
asks to S during the execution A(x).

Then, we get that the outcome of A(x) (correct/failure), its convergence time, and any other
“dynamic” parameter, are random variables over the probability space

Ω = ({0, 1}r ,P(·)), where P(·) is the Probability Distribution induced by A(x) .

For instance, if A chooses the r bits independently and uniformly at random1, then P(y) = 1/2r ,
for every binary sequence y ∈ {0, 1}r .

For the sake of simplicity, assume A be an algorithm for a YES/NO (decision) problem Π(x).
We can introduce the crucial concept of error probability in terms of specific events in Ω and a
notion of good randomized algorithms.

Definition 1.1. We say that Algorithm A for problem Π has error probability ε, for some real
ε ∈ [0, 1], if, for any input x, it holds that

PΩ(A(x) = Π(x)) ≥ 1− ε .

Moreover, we say that A solves Π with high probability if, for sufficiently large n, for any
input x of size n, it holds that

PΩ(A(x) = Π(x)) ≥ 1− 1

nβ
, for some constant β > 0 .

Observe that notation PΩ(·) says that the probability of the event is that defined by the Probability
Space Ω induced by Algorithm A. In the sequel, we will omit this subscript when it is clear from
context.

1Notice that t his means that the source S let each used bit yi be such that P(yi = 1) = 1/2.

1

1.1 Randomized Protocols

We can easily transfer all the concepts and definitions given above for centralized algorithms to any
Distributed Computational Model as follows. A fixed Protocol (i.e. distributed algorithm) A, over
a fixed graph G(V,E) with n = |V | computing nodes and starting from a given initial configuration
x, specifies all actions of every node. Each node v has access to a private, independent source
s(v) of random bits. The decisions taken by each node v according to A, depends (also) on the
outcomes of the random sequence of the random bits flipped by v via s(v).

Let us assume that the maximum number of random bits chosen by any node during the
execution of A on G, with starting configuration x, is r ≥ 0. Then, it turns out that the outcome of
Protocol A(G,x) (as well as its convergence time or its message complexity) is a random variable
which is fully determined by the probabilty space

Ω = ({0, 1}n·r ,P(·)), where P(·) is the Probability Distribution induced by A(G,x) .

Then, the concepts “error probability” and “with high probability’ ’ can then be easily extended
to the framework of distributed algorithms/protocols.

2 Warming-Up: Leader Election in a Unlabeled Ring

In the previous lecturers we have seen that the Leader Election problem (for short LEP) is not
deterministically solvable if nodes have no Unique IDs. This strong negative result can be verified
even over a ring of 3 nodes (i.e. a triangle).

Now, let us consider a distributed system formed by a ring G(V,E) of size n, where nodes are
fully anonymous (i.e. they don’t have any global ID’s). Each nodes knows the size of the ring n
and, clearly, the fact that it is on a ring. Let us take the standard restrictions about faults and
sense of direction.

The main algorithmic question is: Can we design a good and efficient randomized protocol for
LEP in the framework above ?

The answer is yes and the only use of local randomness is in the initial phase where every node
in V chooses a label i independently and uniformly at random from an alphabet [m] = {1, . . . m} of
sufficiently large size and the hope for the global process is that there is no pair of nodes that get
the same label. Then, after this labeling phase, the Protocol works exactly as in the deterministic
setting (e.g. take the simplest deterministic protocol we have seen in the previous lectures). We
formal describe the protocol over a synchronous discrete-time communication model, however, it is
a simple exercise to adapt the protocol (and its analysis) in the asynchronous model.

• Randomized Protocol RL(G,n;m). ∗ (the right choice of parameter m will be given later).

• Phase 0. Wake-Up. ∗ (all nodes will be activated)

• Phase 1. Every node v, chooses (independently) and uniformly at random an integer jv ∈ [m];

• Phase 2. Every node runs a fixed deterministic protocol for LEP assuming Node Labeling
{jv : v ∈ V }.

2

2.1 Protocol Analysis

Let us analyze the correctness of Protocol RL(G,n;m). For the first time in this course, we cannot
prove the protocol is always correct, i.e. it always converges to the a valid final state of LEP .
Indeed, one can easily verify that landing in the possible scenario where every node, after Phase
2, chooses the same label m, the protocol fails! Clearly, this event is extremely unlike but it is
possible!

Our first step is to derive a specific condition, i.e. event, that is sufficient to claim that, assuming
that event take place, the Protocol works correctly. In our case, we observe that a sufficient (not
necessary) condition is the following event

B .
= “there is no pair of different nodes v,w ∈ V , with v �= w such that jv = jw ”

Indeed, as already remarked, if all labels jv’s are mutually different, then the protocol, in Phase
3, works as a standard deterministic Leader Election protocol under the assumption that all labels
are different!

We now bound the probability of Event B in the probability space yielded by Protocol RL on
input (G,n;m). We can see Phase 2 of the protocol as a classic Balls-into-Bins process (see Book
[3]), where there are n balls (i.e. the random choices jv ’s) which are thrown independently and
uniformly at random into m bins (the possible values taken by the labels). The question we are
interested on is how large is the probability that any two different balls turn out to fall inside the
same bin. To this aim, let us consider a fixed bin i ∈ [m]. Then the probability of event

Bi
.
= “at least two balls go to bin i′′

is

union of disjoint events:

n∑
k=2

(
n

k

)(
1

m

)k (
1− 1

m

)n−k

≤
n∑

k=2

(
n

k

)(
1

m

)k

Stirling’s Apx ≤
n∑

k=2

(
en

k
· 1

m

)k

≤ O

(
n2

m2

)
+

n∑
k=3

(
en

k
· 1

m

)k

≤ O

(
n2

m2
+

n4

m3

)
(1)

Now, observe that the bound above refers to a fixed (arbitrary) bin i, while the protocol gets
in trouble whenever at least one bin gets event Bi, so we need a Union Bound here:

P(B) = P

(⋃
i

Bi

)
≤

m∑
i=1

P (Bi)

from Eq. (1) ≤ m · O
(
n2

m2
+

n4

m3

)

3

We can thus fix the parameter m in Protocol RL(G,n;m) as any integer larger than n3 and
get that P(B) = O(1/n). We have thus proved that Protocol RL(G,n;n3) makes a correct Leader
Election on a ring of size n, with high proabilty.

3 Majority Consensus via the 3-Majority Dynamics

Let G = ([n], E) be a graph, let C be a finite set of colors and let x : [n] → C be an initial coloring
of the nodes of G. If the number of colors is |C| = h we will call x an h-coloring.

The algorithmic goal here is to design an efficient and simple protocol for Majority Consensus.
In this task, it is assumed that the initial coloring has some bias s towards some Plurality Color

and the goal is to let the system converge to the monochromatic configuration where all nodes get
the plurality color.

Let us clarify here the notion of bias of a configuration. Given any configuration x, for any
color j ∈ C, define x(j) as the color-j size, i.e., the number of nodes supporting color j in x. Then,
let us order the color sizes x(1), x(2), . . . , x(h) according to the non-increasing ordering. The bias
of x is defined as s(x)

.
= x(1) − x(2). We will use the notation s whenever the configuration x is

clear from the context.

Definition 3.1. Given a distributed system G = ([n], E), the �-Majority-Consenus Problem is
defined by the following property. Starting from any coloring x : [n] → C having bias s(x) ≥ �, the
system must converge to a stable state where all nodes support the majority color.

Consider the following family of synchronous protocols

Definition 3.2. The k-Majority Protocol (for short k-MAJ) works as follows

• At every step,
each node independently picks k neighbors (including itself and with repetition) u.a.r. and
recolors itself according to the majority of the colors it sees (ties are broken arbitrarily).

Exercise 3.1. 1) Consider the 1-MAJ on the complete graph Kn for the binary coloring, i.e., the
case h = 2. Show that if, at a given step t ≥ 0, the system takes any fixed coloring configuration x
with an arbitrary bias s = s(x) ≥ 0 then the expected bias at the next step is s as well. Formally,
show that

E [s(Xt+1) | s(xt) = s] = s

2) Now, consider the 2-MAJ on the complete graph Kn for the binary coloring, i.e., the case h = 2.
Prove a similar expected behaviour to that of 1-MAJ.

The solutions of exercise above show that k-MAJ yields no drift towards the majority color, no
matter what is the current bias the system has: the bias does not increase in average! This fact
has two main consequences. First (show this as a further excercise), it holds that

P (the system converges to the majority color) =
x0(1)

n
, where x0(1) is majority size at t = 0.

This implies that, even starting from a bias s = Ω(n), the error probability of the two dynamics
above is still larger than an absolute constant. Second bad news is the fact that the above dynamics
are very slow to converge: they take a polynomial number of steps! This fact is rather hard to
prove but it is essentially due to the fact that, as remarked above, the dynamics has no expected
drift and its convergence is only due to the (unpredictable) randomness of the process.

For the above facts, we will focus on 3-MAJ.

4

3.1 Unbalanced 2-coloring with 3-majority

We analyze k-MAJ in the case of 2-colorings.

Definition 3.3. For a 2-coloring x : [n] → {red, blue}, we say that x is ω-unbalanced if its bias
is s.t. s(x) ≥ ω.

In the next lemma we show that, if the initial configuration is sufficiently unbalanced, then
3-MAJ solves Majority Consensus within O(log n) rounds, w.h.p.

Lemma 3.4. If G ≡ Kn and the starting 2-coloring is Ω(
√
n log n)-unbalanced, 3-MAJ converges

to the majority color after O(log n) time steps, w.h.p.

Proof. Let Xt be the random variable counting the number of red nodes at time t. For every node
i let Yi the indicator random variable of the event “node i is red at the next step”. For every
a = 0, 1, . . . , n it holds that

P (Yi = 1 |Xt = a) =
(a
n

)3
+ 3

a2(n− a)

n3
=

a2

n3
(3n − 2a)

Hence, the expected number of red nodes at the next time step is

E [Xt+1 |Xt = a] =
(a
n

)2
(3n − 2a) (2)

Wlog, we assume red is the minority color, i.e.

s = s(x) = x(blue)− x(red) = b− a ≥ c
√

n log n ,

and then we split the analysis in three phases according to the range the minority a falls in.

Phase 1: a lies in the range from n/2−Θ
(√

n log n
)
to n/4:

Suppose that the number of red nodes is Xt = a for some a � n/2− s where c
√
n log n � s � n/4

for some positive constant c. Now we show that Xt+1 � n/2− (9/8)s, w.h.p.
Observe that function

f(a) = a2(3n − 2a) in Eq. (2)

is increasing for every 0 < a < n. Hence, for a � n/2− s we have that

E [Xt+1 |Xt = a] =
(a
n

)2
(3n− 2a) �

(n
2
− s
)2

(3n− 2(n/2 − s))

=
n

2
− 3

2
· s+ 2 · s

3

n2
� n

2
− 5

4
· s

where the last inequality holds because s � n/4.
Notice that random variables Yi’s are independent conditional on Xt. We can thus apply the

Chernoff bound (Additive Form, i.e. Eq. 18) with

µ =
n

2
− 5

4
· s and λ =

1

8
· s

we then get, for every a � s � n/4,

5

P

(
Xt+1 �

(
n

2
− 5

4
· s
)
+

1

8
· s
∣∣∣∣ Xt = a

)
= (3)

P

(
Xt+1 �

n

2
− 9

8
· s
∣∣∣∣ Xt = a

)
� e−s2/(64n) (4)

If s � c
√
n log n for a sufficiently large constant c > 0, then the last term above is

e−s2/(64n) ≤ 1

nΘ(1)
.

so we get that Xt+1 � (n/2)− (9/8)s w.h.p. Thus, when c
√
n log n � s � n/4 the unbalance of the

coloring increases exponentially w.h.p.

Let us name Et the event

Et = “Xt � max
{n
4
,
n

2
− (9/8)t

}
”

Observe that from (4) it follows that, for every t ∈ N, we have

P

(
Et+1

∣∣∣∣∣
t⋂

i=1

Ei
)

� 1− n−α

Thus, for T = log(n/4)
log(9/8) = O(log n) the probability that the number of red nodes has gone below

n/4 within the first T time steps is

P (∃t ∈ [0, T] : Xt � n/4) � P

(
T⋂
t=1

Et
)

�
T∏
t=1

P

(
Et
∣∣∣∣∣
t−1⋂
i=1

Ei
)

� (1− n−α)T � 1− 2Tn−α � 1− n−α/2

Phase 2: a lies in the range from n/4 to O(log n): If Xt = a with a � (1/4)n, from (2) we get

E [Xt+1 | Xt = a] =
(a
n

)2
(3n− 2a) �

a ·
(
n/4

n2

)
(3n) ≤ 3

4
a

We can apply Chernoff bound (Multiplicative form) Eq. 13 with

µ =
3

4
a and δ =

1

20
.

and, we can fix a a suitable positive constant β, such that

P

(
Xt+1 �

4

5
a

∣∣∣∣ Xt = a

)
� e−βa

Hence as long as a = Ω(log n) then the number of red nodes decreases exponentially w.h.p. By
reasoning as in the previous phase we get that after further O(log n) time steps the number of red
nodes is O(log n).

6

Phase 3: a lies in the range from O(log n) to zero: Observe that for a = O(log n), in Eq. (2) we
have that

E [Xt+1 |Xt = a] � c/n

for a suitable positive constant c. Hence, by using Markov inequality (see Eq. 12) with

t = 1 and µ = c/n ,

we get
P (Xt+1 � 1 |Xt = a) � c/n

and since Xt+1 is integer valued it follows that all nodes are blue w.h.p.

Exercise 3.2. ∗∗ In the previous lemma we showed that, if 3-MAJ starts from a 2-coloring that
is sufficiently unbalanced then after O(log n) time steps the graph is monochromatic. A natural
question is whether the lemma still holds if we use a suitable “lazy” version of 2-MAJ. For the
2-MAJ protocol over a 2-coloring we need to specify a way of breaking ties. A natural way for that
is the inertial way: In case of ties keep your current color. Observe that this updating rule depends
on 3 values: the two sampled ones plus that supported by the node.
Show that if each node runs this “lazy” version of 2-MAJ then, if we start from a Θ(

√
n log n)-

unbalanced 2-coloring, after O(log n) time steps all nodes have the same color, w.h.p.

4 Distributed Construction of Sparse Expanders

The construction of scalable, sparse graphs having good connectivity properties is a crucial issue
in Network Design. We here focus on simple and efficient distributed protocols for this task which
have strong applications in Peer-To-Peer Netwoks and Opportunistic Networks.

For constant positive parameter d (the parameter d is an integer), we are interested in the
following synchronous protocol that is run on a the complete graph Kn over the set V of n nodes.
The randomized protocol rta (Request-Then-Accept) works as follows :

• rta(n, d)

• Sending Action: Each node v picks d random other notes w1, . . . , wd u.i.r, and sends each
of them a request of establishing edge (v,wi) and it stores edge (v,wi) in its neighborhood
list Nv

• Receiving Action: Each node v receiving a link-request from node w, accept them and
stores link (v,w) in Nv.

• The output graph is G(V,E) s.t. E = ∪vNv.

Notice that G is in general a multigraph with self-loop. We can erase multiple edges without
any relevant consequences on the results described in this note.

In the next subsections we derive some properties of the random graph G such as small maximum
node-degree and good expansion.

7

4.1 Average and Maximum Degree of G

We label the nodes in an arbitrary fixed ordering s.t. we let V = {1, 2, . . . , n} = [n]. By construc-
tion, the degree d(v) of a vertex v is given by

∆(v) = d+∆in
v ,

where ∆in
v is the random variable (r.v.) counting the number of link requests received (and accepted)

by v. We have the following simple

Fact 4.1. Given any node v, it holds that E(∆in
v) = d and, thus, E(∆(v)) = 2d.

Proof. Observe that the protocol produces dn total link-requests. Let us give them any fixed
ordering {1, 2, . . . , dn} = [dn]. Consider any fixed v ∈ [n] and define, for any j ∈ [dn] the binary
r.v. Xv

j such that

Xv
j = 1 iff link-request j has sent to v.

It is then easy to prove that

∆in
v =

∑
j∈[dn]

Xv
j . (5)

Moreover, since each request has been flipped i.u.r., it easily holds that

P(Xv
j = 1) =

1

n
.

So,

E(∆in
v) = E


 ∑

j∈[dn]
Xv

j


 =

∑
j∈[dn]

E
(
Xv

j

)
=
∑

j∈[dn]
P(Xv

j = 1) =
dn

n
= d . (6)

The above fact is not surprisingly at all! Indeed, the total number of link-requests is (deter-
ministically) equal to dn, so |E| = dn and each link request is selected randomly, so it is clear that,
in average, each node must accept d link-requests. However, the bound O(d) holds only in average
and says not too much about what is the maximum (in-)degree of any node. We thus need stronger,
concentration arguments to derive a bound on the maximum degree of a node which holds with
high probability.

We prove the following bound.

Theorem 4.2. The graph G(V,E) constructed by rta(n, d) has maximum degree Θ(log n/ log log n),
w.h.p.

Proof. From Fact 4.1, we already know that, for any fixed node v ∈ [n], it holds that

E(∆(v) = d+∆in
v) = 2d .

We can thus focus only on the distribution of the r.v. ∆in
v . As in the proof of Fact 4.1, we can

write again

8

∆in
v =

∑
j∈[dn]

Xv
j , (7)

where Xv
j are binary r.v.s which are mutually independent, uniformly distributed, and their ex-

pected sum is µ = d. Hence, we can apply the Chernoff’s bound in Eq. (16) for a sufficiently large
β so that

P

(
∆in

v ≥ β
log n

log log n

)
≤ 1

nα
, for some fixed α = α(β) ≥ 2 .

We have not completed our job, yet! The above bound is for one, arbitrarily fixed node v. To
bound the maximum degree we need the bound hold for all nodes, w.h.p. However, we are lucky
since we can consider the union of the “bad” events

Ev = “ ∆in
v ≥ β

log n

log log n
′′ , v ∈ [n] .

Then, from the last inequality, and since α ≥ 2, we get that

P

(⋃
v

Ev
)

≤
∑
v

P(Ev) ≤ 1

n
.

The fact that ∆in
v = Ω(log n/ log log n) w.h.p. is rather more difficult to show: a good way to get it

is to use a tight approximation of Binomial Distribution via a Poisson one. This part can be found
in [3].

Remark. The student may verify the r.v.s ∆in
v ’s are not mutually independent. This is a crucial

issue we will cope with in the next section.

4.2 Vertex Expansion of G (and its Diameter)

• Def. of Expansion

• . Good expansion implies small Diameter and good fault tolerance.

• Proof of expansion of subsets of size O(nβ), for some constant 0 < β < 1.

• Proof of good expansion of subsets of large size: the compression argument (next year?)

4.3 Expansion of G and Some Consequences

In the previous subsection, we proved that random graph G has a linear number of edges and its
maximal degree is bounded by a sublogarithmic function, w.h.p. In network applications, these
properties often represent necessary topology constraints in order to have efficient topology control
and low local congestion. Other fundamental issues in this setting are those concerning the diameter
and the fault-tolerance of G. It is clear that we would like G to have a small diameter and a good
connectivity even if some edges will not work. To analyze the above two features, we need to
introduce a fundamental concept in graph theory:

9

Definition 4.3. Given a graph G(V,E) with V = [n], the (node)-expansion of any subset S ⊂ [n]
is defined as

|N(S)| where N(S)
.
= {w ∈ V − S : (v,w) ∈ E for some v ∈ S }.

Then, for a fixed α ≥ 0, we say graph G is an α-expander if any subset S ⊂ [n] with |S| ≤ n/2 has
expansion at least α · |S|.

Our interest in Ω(1)-expander graphs is well-motivated by the following fact.

Theorem 4.4. Consider an infinite family of graphs of increasing size

{Gn(Vn, En) with Vn = [n] , n ≥ 1 }.

If, an absolute constant α > 0 exists such that, for sufficiently large n, graph Gn is an α-expander,
then its diameter is O(log n).
Moreover, under the same assumption above, in order to fully-disconnect any node subset S from
the rest of the graph, the number of faulty links must be at least linear in the size of S.

Proof. We consider a fixed, sufficiently large graph Gn(Vn, En) and omit the subscrit n for all the
rest of the subsection, i.e.

G(V,E)
.
= Gn(Vn, En) .

Fix any s ∈ V , and let’s make a Breadth-First Search (BFS) starting from s. Since G is α-expander,
we define

Lt
.
= {v ∈ V : d(s, v) = t} , t = 0, 1, . . . n− 1.

Observe that L0 = {s} and L1 = N(s) ≥ α, so L1 ≥ 1 since |N(s)| is an integer. Now, let us define
the following family of subsets:

I0
.
= L0 and It

.
= It−1 ∪ Lt , t = 0, 1,

Notice that, by construction, it holds that |It| = |It−1|+ |Lt| and, hence, since G is an α-expander,
as long as |It−1| ≤ n/2, we get

|It| = |It−1|+ |Lt| ≥ (1 + α) · |It−1| ≥ (1 + α)t−1.

From the above inequality, for some τ = O(log n), it must hold that the size |Iτ | ≥ n/2. This means
that the number of nodes within distance τ from s is at least n/2. Now, consider a node (if any)
w ∈ V −Iτ and repeat the same BFS process starting from w. Then, again, thanks to the expansion
of G, after τ ′ = O(log n) levels of the BFS tree rooted at w, we get that the corresponding subset
I ′τ ′ has reached size at least n/2. The proof is now completed by observing that the two BFS trees
(the one rooted at s and that rooted at w) must share at least one node.

10

4.3.1 Analysis of expansion by Chernoff’s Bound: a non-useful counting argument

Let’s consider a fixed subset S ⊆ [n] s.t. s = |S| ≤ n/2 and look at the following binary r.v.s:

∀v ∈ V − S, Yv = 1 iff v ∈ N o(S) ,

where N o(S) is the set of nodes in V − S having (at least) one link to/from S. We easily get:

P(Yv = 1) ≥ 1−
(
1− s

n

)d ≈ ds

n
, for

ds

n
< 1 (8)

So,

E(|N o(S)|) =
∑

Yv ≥ (n− s)
ds

n
≥ 1

2
ds (9)

since Yv are mutually independent, we can apply Chernoff’s bound (14), and get that

P(|N o(S)| ≤ (1− 1

2
)
1

2
ds) ≤ e−

1
8
ds (10)

Now this is the probability the one fixed S has a bad expansion. We now would like to apply
the Union Bound over all subset of size s. If we do that, we would get that the probaility that a
“bad” subset exist is at most(

n

d

)
· e− 1

8
ds ≤

(en
s

)s · e− 1
8
ds = es+s logn−s log s−1/8ds ≤???? (11)

Now, if s = Ω(n), we have no problem: for a suff. large d we would get a good bound. If s = nβ

for some constant β < 1, then, with another counting argument we can make a good bound as well.
But what about, for instance, for s = n/ log n ? Any hint are welcome!

A Useful inequalities

A.1 Markov Inequality

Let X by any random variable assuming only non-negative values and which has expectation µ.
Then, for any real t ≥ 0, it holds that

P (X ≥ t) ≤ µ

t
. (12)

A.2 Chernoff Bound moltiplicative form

Let X1, . . . ,Xn be independent 0-1 random variables. Let X =
∑n

i=1Xi and E [X] ≤ µ. Then, for
any 0 < δ < 1 the following Chernoff bounds hold:

P (X ≥ (1 + δ)µ) ≤ e−µδ2/3. (13)

P
(
X ≤ (1− δ)µ′) ≤ e−µ′δ2/2. (14)

11

Moreover, for any δ > 0, the following Chernoff bounds hold:

P (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ

. (15)

From the last inequality, we get the following useful fact

Fact A.1. Let µ ≥ 1 and let α be any positive constant. Then, for a sufficiently large constant
β > 0, sufficiently large n, it holds that

P

(
X ≥

(
1 + β · log n

log log n

)
µ

)
≤ e−αµ logn. (16)

Proof. Consider Eq. 15 and fix δ := β · logn
log logn , then make simple calculations and asymptotical

approximations (the details are left as an homework).

A.3 Chernoff Bound additive form

Let X1, . . . ,Xn be independent 0-1 random variables. Let X =
∑n

i=1 Xi and µ = E [X]. Then the
following Chernoff bounds hold:
for any 0 < λ < n− µ,

P (X ≤ µ− λ) ≤ e−2λ2/n, (17)

for any 0 < λ < µ,
P (X ≥ µ+ λ) ≤ e−2λ2/n. (18)

A.4 The Method of Bounded Differences

In Section 3.2, we used the Method of Bounded Differences. In particular, we applied the following
concentration bound [1, 2].

Theorem A.2. Let Y = (Y1, . . . , Ym) be independent r.v.s, with Yj taking values in a set Aj .
Suppose the real-valued funcion f defined on

∏
Aj satisfies

|f(y)− f(y′)| ≤ βj

whenever vectors y and y′ differs only in the j-th coordinate. Let µ be the expected value of r.v.
F (Y). Then, for any M > 0, it holds that

Pr (F (Y)− µ ≥ M) ≤ e
− 2M2

∑m
j=1

β2
j .

A.5 Reverse Chernoff Bound

Let X1, . . . ,Xn be independent 0-1 random variables, X =
∑n

i=1 Xi, µ = E [X] and δ ∈ (0, 1/2]. If
µ ≤ 1

2n and δ2µ ≥ 3 then the following bounds hold:

P (X ≥ (1 + δ)µ) ≥ e−9δ2µ, (19)

P (X ≤ (1− δ)µ) ≥ e−9δ2µ. (20)

12

References

[1] D.P. Dubhashi and A. Panconesi. Concentration of measure for the analysis of randomized
algorithms. Cambridge University Press, 2009.

[2] Colin McDiarmid. Concentration. in probabilistic methods for algorithmic discrete mathematics,
mcdiarmid c., ramirez-alfonsin j., reed b. (eds). Algorithms and Combinatorics, Springer, Berlin,
Heidelberg, 16:195–248, 1998.

[3] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

13

