Lezione 13 – funzioni time- e space-constructible e specifiche classi di complessità

Lezione del 17/04/2024

Un paio di questioncine aperte...

- C'erano un paio di cose che erano rimaste lì, un po' in sospeso...
- Diciamo, non del tutto chiuse
- Innanzi tutto, c'era la questione della definizione delle classi di complessità non deterministiche – dove viene richiesta la accettabilità di un linguaggio
 - pur sapendo che, ogni volta che fissiamo la quantità massima di risorse (spazio o tempo) utilizzabile, un linguaggio accettabile è anche decidibile
 - non conosciamo la quantità di risorse che occorrono per rigettare le parole che non vi appartengono
- Poi, sappiamo che tutto ciò che è deciso da una macchina non deterministica può essere deciso anche da una macchina deterministica
- Tuttavia, un linguaggio che sappiamo appartenere a NTIME[f(n)] non sappiamo ancora in quale classe di complessità temporale deterministica collocarlo
 - né sappiamo se il fatto di sapere che appartiene a NTIME[f(n)] ci fornisca strumenti in grado di affermare "ok, allora sta pure in DTIME[qualche altra funzione]"

- Innanzi tutto, non è proprio piacevole dover ammettere che se un certo linguaggio L è in NTIME[f(n)]
 - ossia, sappiamo che esiste una macchina NT che accetta le sue parole x (ossia, le parole x ∈ L) eseguendo O(f(|x|)) istruzioni
- non sappiamo quanto tempo occorre per capire che una parola non appartiene a quel linguaggio
 - ossia, quando x ∉ L non sappiamo quante istruzioni sono eseguite da ciascuna computazione deterministica di NT(x) – che, sappiamo, rigetta
- Ebbene, il prossimo teorema afferma che:
 - se f è time-constructible e L è in NTIME[f(n)], allora una modifica della macchina NT che accetta le parole x di L eseguendo O(f(|x|)) istruzioni è anche capace di rigettare le parole non in L eseguendo O(f(|x|)) istruzioni;
 - se f è space-constructible e L è in NSPACE[f(n)], allora una modifica della macchina NT che accetta le parole di L utilizzando O(f(|x|)) celle del nastro è anche capace di rigettare le parole non in L utilizzando O(f(|x|)) celle del nastro;

Teorema 6.16: Sia f : \mathbb{N} → \mathbb{N} una funzione time-constructible. Se $L \in NTIME[f(n)]$, allora L è decidibile in tempo non deterministico in O(f(n)).

Sia $f : \mathbb{N} \to \mathbb{N}$ una funzione space-constructible. Se $L \in NSPACE[f(n)]$, allora $L \in C$ decidibile in spazio non deterministico in O(f(n))

- Dimostriamo soltanto il caso in cui f è time-constructible
- La dimostrazione del caso in cui f e`space-constructible è analoga
- Riutilizziamo, aggiustandola opportunamente, la dimostrazione del Teorema 6.2
- **Teorema 6.2** (tempo): Sia $f: \mathbb{N} \to \mathbb{N}$ una funzione totale calcolabile. Se $L \subseteq \Sigma^*$ è accettato da una macchina di Turing non deterministica NT tale che, per ogni $x \in L$, ntime(NT,x) $\leq f(|x|)$ allora L è decidibile.
- Lo vedete quanto si assomigliano i due teoremi?

- Sia f : $\mathbb{N} \to \mathbb{N}$ una funzione time-constructible. Se $L \in \mathsf{NTIME}[f(n)]$, allora $L \ \grave{\mathsf{e}}$ decidibile in tempo non deterministico in O(f(n)).
- ► $L \in NTIME[f(n)]$: sia NT la macchina che accetta L, e assumiamo che, per $x \in L$, ntime(NT,x) \leq c f(|x|), per qualche costante c > 0
- Poiché f è time-constructible, anche c f è time-constructible: allora, esiste una macchina T_f di tipo trasduttore tale che, per ogni n ∈ N, T_f (1ⁿ) termina
 - con il valore c f(n) scritto sul nastro di output in unario
 - dopo aver eseguito O(c f(n)) istruzioni
- Costruiamo una nuova macchina non deterministica NT', a tre nastri, che decide L: per ogni x ∈ Σ*
 - NT'(x) scrive |x| in unario sul secondo nastro e invoca T_f(|x|): al termine della computazione sul terzo nastro si troverà scritto c f(|x|) in unario
 - ▶ NT'(x) invoca NT(x) e, per ogni quintupla eseguita non deterministicamente da NT(x):
 - se il terzo nastro contiene un '1' allora NT' lo "cancella" e, inoltre,
 - se NT(x) accetta allora anche NT'(x) accetta, se NT(x) rigetta allora anche NT'(x) rigetta;
 - se il terzo nastro di NT' è vuoto (e NT(x) non ha ancora terminato), allora NT'(x) rigetta

- ▶ Sia $f : \mathbb{N} \to \mathbb{N}$ una funzione time-constructible. Allora, per ogni $L \in \mathbb{N}$ TIME[f(n)], si ha che L è decidibile in tempo non deterministico in O(f(n)).
- Osserviamo, intanto, che le computazioni di NT' terminano sempre
 - se la simulazione di una computazione di NT(x) dura più di c f(|x|) passi, la interrompiamo!
- Poi, NT' decide L, infatti:
 - se x \in L, allora NT(x) accetta in al più c f(|x|) passi: e, quindi, NT'(x) accetta
 - se x ∉ L, allora o NT(x) rigetta in al più c f(|x|) passi e, quindi, NT'(x) rigetta, oppure NT(x) non termina entro c f(|x|) passi e, quindi, NT'(x), ugualmente, rigetta
- Ma quanto impiega NT' a decidere se x ∈ L oppure no?
 - ightharpoonup O(c f(|x|) per calcolare c f(|x|) perché c f è time-constructible!
 - e altri c f(|x|) passi per simulare c f(|x|) passi di NT(x)
 - ossia, O(f(|x|)) passi
- Per questo possiamo concludere che L è decidibile, in tempo non deterministico O(f(n))

Le uniche relazioni che conosciamo (fino ad ora) fra classi deterministiche e classi non deterministiche sono quelle banali:

 $DTIME[f(n)] \subseteq NTIME[f(n)] = DSPACE[f(n)] \subseteq NSPACE[f(n)].$

- basate sull'osservazione che una macchina deterministica è una particolare macchina non deterministica
- A parte ciò, sappiamo che tutto ciò che è deciso da una macchina non deterministica può essere deciso anche da una macchina deterministica
- Tuttavia, un linguaggio che sappiamo appartenere a NTIME[f(n)] non sappiamo in quale classe di complessità temporale deterministica collocarlo
 - non sappiamo se esiste un funzione g(n)
 - che magari cresce molto più velocemente di f(n)
 - tale che possiamo affermare "se L appartiene a NTIME[f(n)] allora L appartiene a DTIME[g(n)]"
- a meno che la funzione limite f della classe non sia una funzione timeconstructible...

- **Teorema 6.17**: Per ogni funzione time-constructible $f : \mathbb{N} \to \mathbb{N}$, NTIME[f (n)] ⊆ DTIME[$2^{O(f(n))}$].
- Sia L \subseteq {0,1}* tale che L ∈ NTIME[f (n)]; allora esistono
 - una macchina di Turing non deterministica NT che accetta L
 - una costante h
- ▶ tali che, per ogni $x \in L$, ntime(NT,x) \leq hf(|x|).
- Poiche' h fè time-constructible, esiste T_f che, con input 1^n , calcola $1^{hf(n)}$ in tempo O(f(n)).
- Indichiamo con k il grado di non determinismo di NT
 - e ricordiamo che k è una costante, indipendente dall'input
- e utilizziamo di nuovo la tecnica della simulazione per definire una macchina di Turing deterministica T, dotata di 3 nastri, che simuli il comportamento di NT:
 - su input x, T simula in successione, una dopo l'altra, tutte le computazioni deterministiche di NT (x) di lunghezza h f (|x|).

- **Teorema 6.17**: Per ogni funzione time-constructible $f : \mathbb{N} \to \mathbb{N}$, NTIME[f (n)] ⊆ DTIME[2 $^{O(f(n))}$].
- La macchina T con input x opera in due fasi, come di seguito descritto:
- **FASE 1)** Simula la computazione $T_f(|x|)$:
 - per ogni carattere di x, scrive sul secondo nastro un carattere '1' ossia, scrive 1 |x| sul secondo nastro
 - \rightarrow in seguito, calcola $1^{f(|x|)}$ scrivendolo sul terzo nastro
 - infine, concatena h volte il contenuto del terzo nastro ottenendo il valore 1 h f (|x|)
 - (stiamo dimostrando che: se f è time-constructible allora anche h f è time constructible
 - cosa che nel teorema precedente avevamo solo enunciato).
- Fase 2) Simula, una alla volta, tutte le computazioni deterministiche di NT(x) di lunghezza h f(|x|) utilizzando, per ciascuna computazione, la posizione della testina sul terzo nastro come contatore:
 - to be continued ...

- **Teorema 6.17**: Per ogni funzione time-constructible $f : \mathbb{N} \to \mathbb{N}$, NTIME[f(n)] ⊆ DTIME[$2^{O(f(n))}$].
- ► La macchina T con input x opera in due fasi, come di seguito descritto:
- Fase 2) Simula, una alla volta, tutte le computazioni deterministiche di NT(x) di lunghezza h f(|x|) utilizzando, per ciascuna computazione, la posizione della testina sul terzo nastro come contatore:
 - simula al più h f(|x|) passi della computazione più a sinistra di tutte nell'albero NT(x): se tale computazione accetta entro h f(|x|) passi allora T termina in q_A, altrimenti
 - simula al più h f(|x|) passi della computazione immediatamente più a destra di quella appena simulata: se tale computazione accetta entro h f(|x|) passi allora T termina in q_A, altrimenti
 - **...**
 - simula al più h f(|x|) passi della computazione più a destra di tutte nell'albero NT(x): se tale computazione accetta entro h f(|x|) passi allora T termina in q_A, altrimenti T termina in q_R
- T decide L: infatti... to be continued ...

- **Teorema 6.17**: Per ogni funzione time-constructible $f : \mathbb{N} \to \mathbb{N}$, NTIME[f (n)] ⊆ DTIME[2 O(f(n))].
- T décide L: infatti, poiché in al più h f(|x|) passi NT accetta le parole x ∈ L, allora
- se x ∈ L, allora in hf(|x|) passi una delle computazioni deterministiche di NT(x) termina nello stato di accettazione
 - allora, durante la FASE 2), poiché T simula i primi h f(|x|) passi di tutte le computazioni deterministiche di NT(x) fino a quando una di esse accetta oppure non le ha esaminate tutte, prima o poi T simulerà anche quella accettante: e questo porterà T nello stato q_A
- se x ∉ L, allora in hf(|x|) passi nessuna delle computazioni deterministiche di NT(x) termina nello stato di accettazione
 - allora, durante la FASE 2), T dovrà simulare i primi h f(|x|) passi di tutte le computazioni deterministiche di NT(x) (da quella più a sinistra nell'albero a quella più a destra, nessuna esclusa), perché nessuna di esse accetta: e questo porterà T nello stato q_R
- Questo prova che T decide L.
- Ma quanto tempo impiega? ... to be continued ...

- **Teorema 6.17**: Per ogni funzione time-constructible $f : \mathbb{N} \to \mathbb{N}$, NTIME[f (n)] ⊆ DTIME[2 $^{O(f(n))}$].
- T decide L.
- Ma quanto tempo impiega T a decidere L?
- ► Intanto, la FASE 1) richiede O(h f(|x|) passi perché f è time-constructible.
- Poi, riguardo la FASE 2):
 - sia k il grado di non determinismo di NT k è costante!
 - \blacksquare allora, il numero di computazioni deterministiche di NT(x) di lunghezza h f(|x|) è k h f(|x|)
 - ightharpoonup ciascuna di queste computazioni viene simulata da T in O(h f(|x|)) passi.
- Allora, $dtime(T,x) \in O(h f(|x|) + h f(|x|) k^{h f(|x|)}) = O(h f(|x|) k^{h f(|x|)}) \subseteq O(2^{O(f(|x|))})$.
- Infine, in virtu` del Teorema 6.3, esiste una macchina T₁ ad un nastro tale che
 - \blacksquare per ogni input x, l'esito della computazione $T_1(x)$ coincide con l'esito della computazione T(x)
 - ed esiste una costante c tale che dtime $(T_1, x) \le dtime(T, x)^C \in O(2^{O(f(|x|))})$.
- Questo conclude la dimostrazione che L \in DTIME[$2^{O(f(|x|))}$].

Specifiche classi di complessità

- Siamo al paragrafo 6.6, pronti a introdurre alcune fra le più rilevanti classi di complessità, definite sulla base di funzioni time- e space-constructible:
- ▶ $P \neq U_k \in \mathbb{N} DTIME[n^k]$
 - la classe dei linguaggi decidibili in tempo deterministico polinomiale;
- ▶ NP = $\bigcup_{k \in \mathbb{N}} \text{NTIME}[n^k]$:
 - la classe dei linguaggi accettabili in tempo non deterministico polinomiale;
 - ma anche decidibili in tempo non deterministico polinomiale!
- PSPACE = $U_{k \in \mathbb{N}}$ DSPACE[n^k]
 - la classe dei linguaggi decidibili in spazio deterministico polinomiale;
- NPSPACE = $U_{k \in \mathbb{N}}$ NSPACE[n^k]
 - la classe dei linguaggi accettabili in spazio non deterministico polinomiale;
 - ma anche decidibili in spazio non deterministico polinomiale!

Specifiche classi di complessità

- Siamo al paragrafo 6.6, pronti a definire alcune fra le più rilevanti classi di complessità:
- \blacksquare EXPTIME = $\bigcup_{k \in \mathbb{N}} \mathsf{DTIME}[2^{\mathsf{p}(\mathsf{n},k)}]$
 - la classe dei linguaggi decidibili in tempo deterministico esponenziale ove l'esponente che descrive la funzione limite è un polinomio in n di grado k – indicato come p(n,k)
- MEXPTIME= $\bigcup_{k \in \mathbb{N}} \text{NTIME}[2^{p(n,k)}]$
 - la classe dei linguaggi accettabili in tempo non deterministico esponenziale (ove l'esponente che descrive la funzione limite è un polinomio in n di grado k);
 - ma anche decidibili in tempo non deterministico esponenziale!
- Infine, una classe di complessità di funzioni: la classe delle funzioni (totali) calcolabili in tempo deterministico polinomiale:

FP= $\bigcup_{k \in \mathbb{N}} \{ f : \Sigma_1^* \to \Sigma_2^* : \text{ esiste una macchina di Turing deterministica T}$ (di tipo trasduttore) che calcola f e, per ogni $x \in \Sigma_1^*$, dtime(T,x) $\in O(|x|^k)$ }.

Proprietà – Corollario 6.2

- P⊆NP, PSPACE⊆NPSPACE e EXPTIME⊆NEXPTIME
 - conseguenza diretta del Teorema 6.8: una macchina deterministica è una macchina non deterministica con grado di non determinismo 1
- P ⊆ PSPACE e NP ⊆ NPSPACE
 - sono conseguenza diretta del Teorema 6.9: per ogni funzione totale e calcolabile f DTIME[f(n)] ⊆ DSPACE[f(n)] e NTIME[f(n)] ⊆ NSPACE[f(n)]
- PSPACE ⊆ EXPTIME e NPSPACE ⊆ NEXPTIME
 - sono conseguenza diretta del Teorema 6.10: per ogni funzione totale e calcolabile f DSPACE[f(n)] ⊆ DTIME[2 O(f(n))] e NSPACE[f(n)] ⊆ NTIME[2 O(f(n))]
- NP ⊆ EXPTIME
 - conseguenza diretta del Teorema 6.17: per ogni funzione time-constructible f NTIME[f(n)] ⊆ DTIME[2 O(f(n))]
 - e i polinomi sono funzioni time-constructible

Relazioni interessanti, ma...

- Tutte le relazioni fra classi complessità che abbiamo, fino ad ora, dimostrato sono inclusioni improprie
- Ossia, per ciascuna di quelle relazioni non siamo in grado di dimostrare né l'inclusione propria né la coincidenza delle due classi che la costituiscono.
- Ad esempio, sappiamo che
 - tutti i linguaggi che sono in PSPACE sono anche in EXPTIME
 - tutti i linguaggi che sono in P sono anche in NP
- Ma non sappiamo rispondere alle seguenti domande
 - non sarà forse che tutti i linguaggi in EXPTIME sono anche in PSPACE? Ossia, che PSPACE = EXPTIME?
 - Oppure, esiste almeno un linguaggio in EXPTIME che non può essere deciso in spazio polinomiale? Ossia, che PSPACE

 EXPTIME
- Si tratta, se volete, di relazioni deboli
 - e sarebbe tremendo se si dimostrasse che tutte quelle inclusioni improprie fossero, in effetti, delle uguaglianze!
 - Non saremmo affatto in grado di classificare i problemi in "facili" e "difficili"

L'unica relazione di contenimento stretto!

- In effetti, uno strumento che dimostra l'inclusione stretta fra classi di complessità ce l'abbiamo: il Teorema di gerarchia temporale:
- Teorema 6.15 [Teorema di gerarchia temporale]: Siano $f: \mathbb{N} \to \mathbb{N}$ e $g: \mathbb{N} \to \mathbb{N}$ due funzioni tali che f e` time-constructible e

$$\lim_{n \to \infty} \frac{g(n) \log g(n)}{f(n)} = 0$$

Allora, DTIME[g(n)] ⊂ DTIME[f(n)] ossia, esiste un linguaggio L tale che L ∈ DTIME[f(n)] e L ∉ DTIME[g(n)].

Come conseguenza del Teorema di gerarchia temporale, vale il seguente

Teorema 6.18: P ⊂ EXPTIME

(che noi non dimostriamo e la cui dimostrazione, per gli interessati, si trova sulle dispense)

L'unica relazione di uguaglianza!

- La maggior parte delle relazioni fra classi complessità che abbiamo visto fino ad ora, sono inclusioni improprie
- A parte le inclusioni proprie che derivano dal Teorema di gerarchia temporale,
- del quale abbiamo dimostrato un caso particolare:
 - il Teorema 6.18: P ⊂ EXPTIME
- In effetti, esiste anche un teorema che va nella direzione opposta che dimostra, cioè, l'uguaglianza di due classi
- una classe deterministica e una classe non deterministica:
- Teorema 6.19: PSPACE = NPSPACE
 - non studiamo, quest'anno, la dimostrazione di questo teorema
 - ma sono ben lieta di discuterne con chi la vuole guardare!